

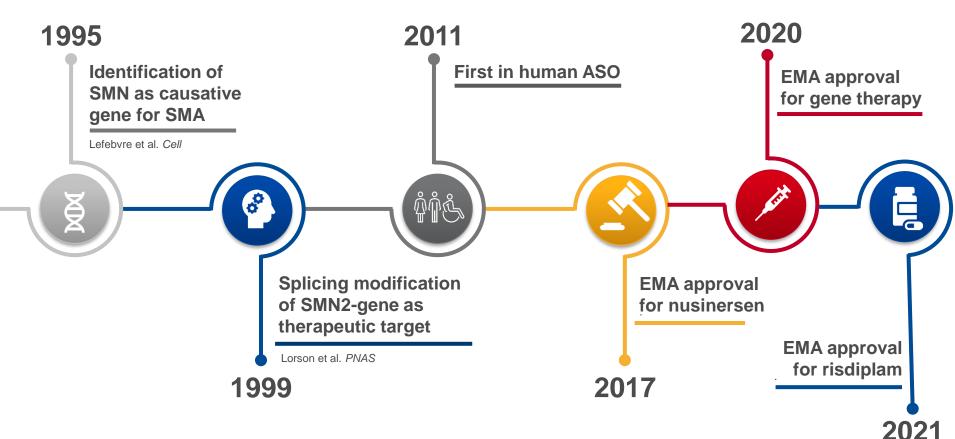
for rare or low prevalence complex diseases

Network

Neuromuscular Diseases (ERN EURO-NMD)

Present and future of gene therapy in Neuromuscular Diseases

Satellite Scientific Symposium endorsed by ERN EURO-NMD

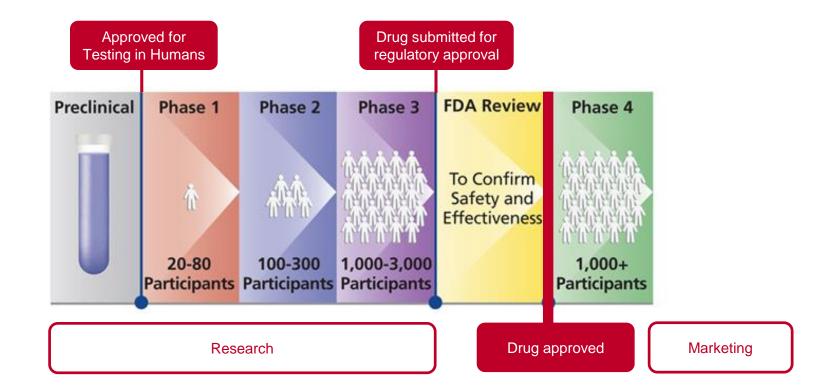

February, 22nd 2024

Latest advances and perspectives for the development of gene therapies

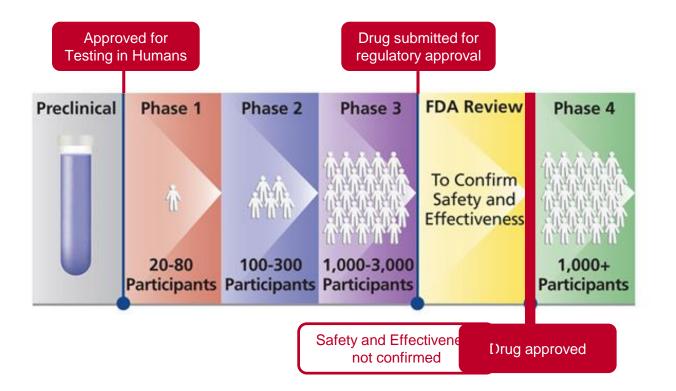
Spinal muscular atrophy

Jan Kirschner University of Freiburg

Drug development for SMA



Gene therapies for rare diseases


- » only about 5% of 7000 rare diseases have an approved drug treatment
- » about 80% of rare diseases are due to genetic mutations
- » most begin during childhood and have significant impact on health and QoL
- » gene therapy offers potential to address underlying biology
- » small populations
- » often difficult to conduct placebo-controlled trials

Balance between high medical need and limited evidence

Drug development pipeline

Drug development pipeline for orphan drugs

The "evidence gap"

- » No randomized trials
- » Extrapolation (age, disease stage)
- » Surrogate parameters
- » No data on long-term effectiveness

» (Rare) side effects are not known

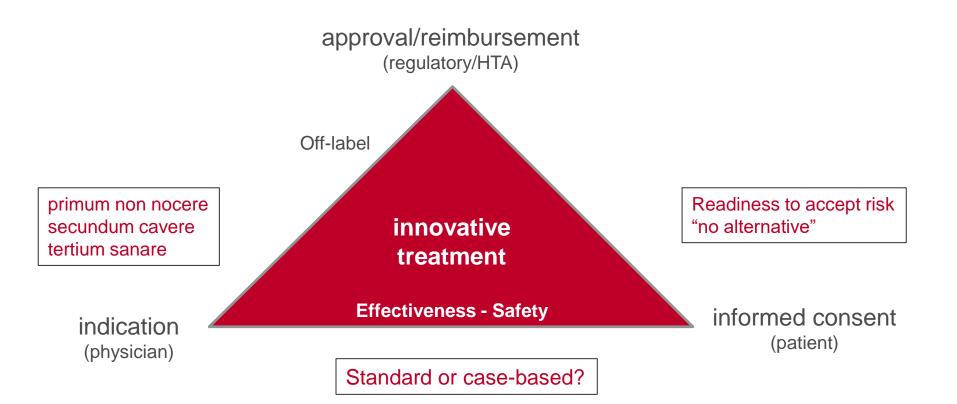
Treatment with onasemnogene abeparvovec (Zolgensma®)

» Clinical studies in infants with SMA type 1 up to 6 months of age

- Motor milestone achievement that are not expected in natural history
- Ongoing effectiveness after one-time treatment

» EMA approval (5/2020)

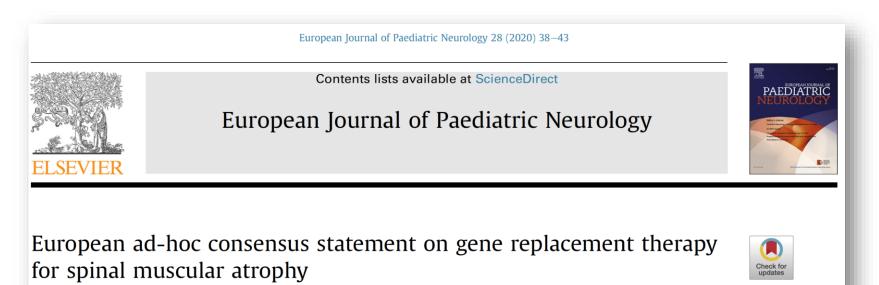
- Patients with SMA type 1 (symptom onset before 6 months of age)
- Patients with up to 3 SMN2 copies, including SMA type 2/3
- No clear age or body weight limit


» Ongoing developments

- Use in older/heavier patients
- Clinical studies with intrathecal administration

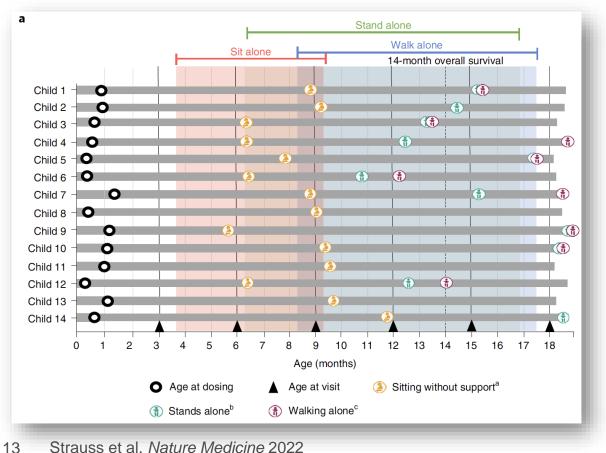
Decision-makers for innovative treatments

Decision-makers for innovative treatments



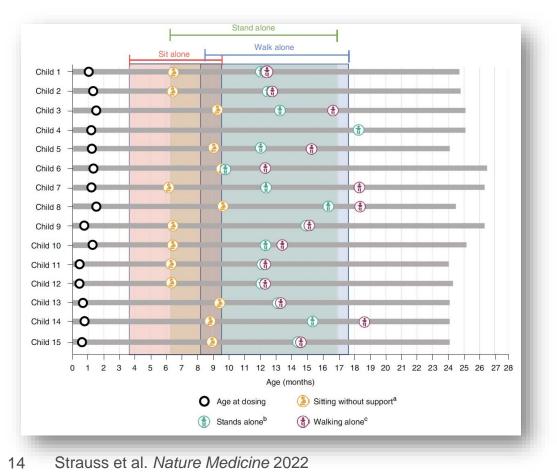
- » Educate the community about evidence gap (experts and patients)
- » Continue clinical research ("as good as possible")
- » Continous evaluation rather than "one-time" approval
- » Dynamic pricing models
- » Update the community on growing evidence
- » cross-disease, cross-company, cross-country ... sharing and networking

Comparison of three approved treatments for SMA


	Nusinersen (Spinraza [®])	Onasemnogene- abeparvovec (Zolgensma®)	Risdiplam (Evrysdi [®])	
Approval	2017 all SMA patients	2020 SMA type 1, or up to 3 <i>SMN</i> 2 copies	2021 SMA types 1-3, or up to 4 <i>SMN</i> 2 copies	
Experience	> 15 000 patients	> 3 000 patients	> 8 000 patients	
Dosing	Standard dose, every 4 months	bw dependent, one-time treatment	bw dependent, daily	
Administration	intrathecal	intravenous	oral solution	
Effectiveness	depends on disease stage at initiation			
Price	600.000 €/ year, follwing yrs 320.000 €/year	1.5 million € once	85.000 - 290.000 €/year	

Treatment with onasemnogene abeparvovec

Janbernd Kirschner ^{a, *}, Nina Butoianu ^b, Nathalie Goemans ^c, Jana Haberlova ^d, Anna Kostera-Pruszczyk ^e, Eugenio Mercuri ^{g, h}, W. Ludo van der Pol ^k, Susana Quijano-Roy ⁱ, Thomas Sejersen ^j, Eduardo F. Tizzano ^f, Andreas Ziegler ¹, Laurent Servais ^{m, n, 1}, Francesco Muntoni ^{o, 1}


Presymptomatic Treatment with onasemnogene abeparvovec

SPR1NT Trial

14 children with 2 *SMN2* copies Treated before symptom onset Within six postnatal weeks

Presymptomatic Treatment with onasemnogene abeparvovec

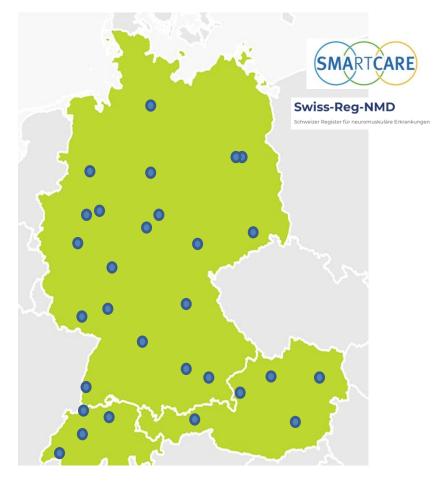
SPR1NT Trial

15 children with 3 *SMN2* copies Treated before symptom onset Within six postnatal weeks

Real-world experience with Onasemnogene abeparvovec Restore Registry

Demographics and baseline clinical characteristics for all patients identified by newborn screening, clinical diagnosis, and in the overal cohort					
Characteristics	Newborn screening $(n = 98)$	Clinical diagnosis $(n=70)$	All patients (N = 168)		
Age, months					
At initial SMA diagnosis					
Mean (SD)	1.34 (7.12)	9.49 (6.54)	4.73 (7.96)		
Median (IQR)	0 (0–1)	8.5 (4–14)	1 (0-6)		
Min, Max	0, 70	0, 27	0, 70		
At onasemnogene abeparvovec infusion					
Mean (SD)	3.30 (7.99)	10.70 (6.66)	6.38 (8.29)		
Median (IQR)	1 (1-2)	9.5 (5-15)	3 (1-10)		
Min, Max	0, 72	0, 28	0, 72		

Real-world experience with Onasemnogene abeparvovec



Real-world experience with gene therapy for SMA in Germany, Austria and Switzerland

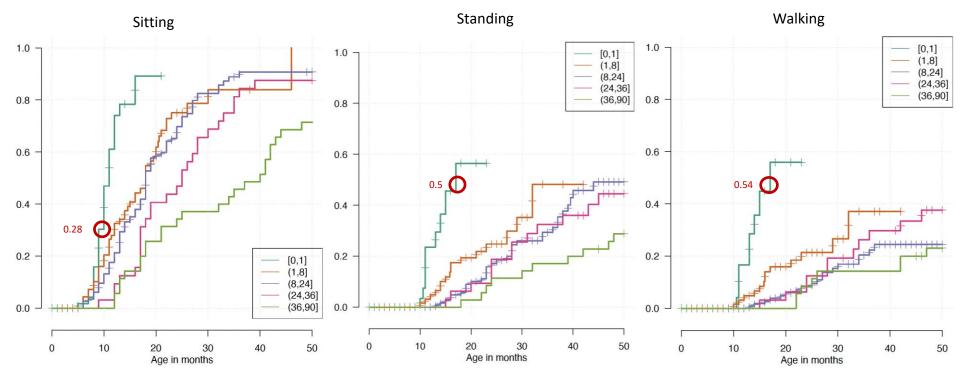
Study ¹:

- Protocol-based according to published care recommendations¹
- Prospective registry study (single arm, no control group)
- multicentre (all **29 treatment centres** in D-A-CH-region
- Data cut 02/2023
- Prespecified statistical analysis plan (SAP)

¹: Ziegler et al., Nervenarzt. 2020 Jun;91(6):518–529. doi: 10.1007/s00115-020-00919-8.

Cohort of patients treated

Characteristic		total n = 347
Sex, N (%)	female	186 (54)
	male	161 (46)
SMA type, N (%)	Pre-symptomatic	134 (39)
	1	153 (44)
	2	55 (16)
	3	5 (1)
SMN2 copy number, N (%)	1	2 (0.6)
	2	207 (60)
	3	136 (39)
	4	2 (0.6)
Pre-treatment, N (%)	naïv	177 (51)
	Nusinersen	152 (44)
	duration, months, mean±SD (range)	12.1±12.8 (0-55)
	time between nusinersen to GT, days, mean±SD (range)	75.8±44.5 (1-317)
	Risdiplam	16 (5)
	duration, months, mean±SD (range)	4±4.7 (0.5-19)
	time between risdiplam to GT, days, mean±SD (range)	11.1±12.7 (1-44)
	Nusinersen+Risdiplam	1 (0.3)
Age at infusion, months, mean±SD (range)		14.0±15.4 (0-90)
Weight at infusion, kg, mean±SD (range)		7.7±3.4 (1.7-17.6)
Follow up, months, mean±SD (range)		13.7±9.5(0-43)


.

KINDER UKE

Motor milestones Meilensteine sind altersabhängig

Charité Berlin, UKE Hamburg & University Hospital Heidelberg | GNP 2023

Adverse events

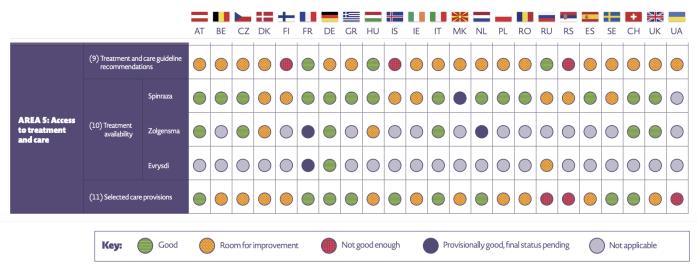
Background

Hepatotoxity common, often requiring extended use of steroid (if transaminases > 2fold ULN

Thrombocytopenia common during the first two weeks

Rare cases with severe adverse events like thrombotic microangiopathy, liver failure Only seen in real-world data, not in clinical trials

Controlled cohort-study on the effect of newborn screening



21 Schwartz et. al 2024 – accepted for JAMA Pediatrics

Access to treatment across Europe

Figure 1: Summary of metric status for each country

Refer to Table 19 in appendix for a fuller explanation of red, yellow and green assessment criteria for each metric

AT – Austria; BE – Belgium; CZ – Czech Republic; DK – Denmark; FI – Finland; FR – France; DE – Germany; GR – Greece; HU – Hungary; IS – Iceland; IE – Ireland; IT – Italy; MK – North Macedonia; NL – The Netherlands; PL – Poland; RO – Romania; RU – Russia; RS – Serbia; ES – Spain; SE – Sweden; CH – Switzerland; UK – United Kingdom; UA – Ukraine

22 CRA in collaboration with SMA Europe and support from Biogen (8/2021)

Conclusion and perspectives

» Initiating new drug treatments with limited evidence can be challenging.

- » Treatment effects are most impressive when initiated pre-symptomatically.
- » Genetic newborn screening should be standard in countries, where at least one treatment is available.
- » Additional real-world data help to close the evidence gap.
- » Symptomatic patients remain with significant disease burden despite treatment. Combination with other drug targets might be needed (e.g. myostatin inhibition).

» Identifying predictors of outcome and managing expectations is essential.

for rare or low prevalence complex diseases

Network

Neuromuscular Diseases (ERN EURO-NMD)

Thank you!

